Potentiation of kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways.

نویسندگان

  • Ulka Vijapurkar
  • Wei Wang
  • Ronald Herbst
چکیده

Targeting the mitotic motor kinesin kinesin spindle protein (KSP) is a new strategy for cancer therapy. We have examined the molecular events induced by KSP inhibition and explored possible mechanisms of resistance and sensitization of tumor cells to KSP inhibitors. We found that KSP inhibition induced cell death primarily via activation of the mitochondrial death pathway. In HeLa cells, inhibition of KSP by small-molecule inhibitor monastrol resulted in mitotic arrest and rapid caspase activation. BclXL phosphorylation and loss of mitochondrial membrane potential was detected before significant caspase activation, which was required to trigger the subsequent apoptotic pathway. In A549 cells, however, KSP inhibition did not induce mitochondrial damage, significant caspase activity, or cell death. A549 cells aberrantly exited mitosis, following a prolonged drug-induced arrest, and arrested in a G(1)-like state with 4N DNA content in a p53-dependent manner. Overexpression of BclXL provided a protective mechanism, and its depletion rescued the apoptotic response to monastrol. In addition, Fas receptor was up-regulated in A549 cells in response to monastrol. Treatment with Fas receptor agonists sensitized the cells to monastrol-induced cell death, following exit from mitosis. Thus, activation of the death receptor pathway offered another mechanism to enhance KSP inhibitor-induced apoptosis. This study has elucidated cellular responses induced by KSP inhibitors, and the results provide insights for a more effective cancer treatment with these agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heavy Metal Induced Cell Necrosis: Involves Apoptosis Death Signals Initiated by Mitochondrial Injury

Introduction: Severe industrial diseases result from the hepatic accumulation of mercury, cadmium or chromium in humans and on the other hand cadmium and dichromate and mercuric salts may induce lung or kidney cancer. Acute or chronic CdCl2, HgCl2 or dichromate administration induces hepatic and nephrotoxicity in rodents. Oxidative stress is often cited as a possible cause of metal induced cell...

متن کامل

Apoptosis: from Signalling Pathways to Therapeutic Tools

Apoptosis or programmed cell death is a gene regulated phenomenon which is important in both physiological and pathological conditions. It is characterized by distinct morphological features including chromatin condensation, cell and nuclear shrinkage, membrane blebbing and oligonucleosomal DNA fragmentation. Although, two major apoptotic pathways including 1) the death receptor (extrinsic) and...

متن کامل

Possible Involvement of a Specific Cell Surface Receptor for Calprotectin-Induced Apoptosis in Colon Adenocarcinoma and Carcinam Cell Lines (SW742 and HT29/219)

Calprotectin, a calcium-bound protein complex, is abundant in the cytosol of neutrophils. It has been reported that this protein has an apoptotic activity in tumor cells. Since calprotectin increases in colorectal cancer, this study was conducted to investigate, for the first time, the cytotoxicity/apoptotic effect of calprotectin on HT29/219 and SW742 colon carcinoma and adenocarcinoma cell li...

متن کامل

Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells

Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2007